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Abstract--Models published in the two-phase flow literature for the added mass coefficient of a dilute 
bubbly dispersion are discussed and compared. It is shown that the differences between the models are 
mainly due to the different ways in which the added mass is defined. Also, approximate expressions for 
the added mass coefficient of non-dilute bubbly dispersions are given. Finally, the use of the models in 
an equation for the average motion of the bubbles is briefly discussed. 
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I. I N T R O D U C T I O N  

Conservation equations for the flow of dispersions of gas bubbles in liquid include an added mass 
coefficient, when forces associated with the inertia of the fluid are of importance to the bubble 
motion. Due to hydrodynamic interactions between the gas bubbles this coefficient depends on the 
volumetric gas concentration or void fraction, and various relations expressing this dependency 
have been proposed, particularly for dilute dispersions. It is the purpose of this paper, firstly, to 
show that the differences between these relations are essentially due to differences in the definition 
of an effective added mass for a bubbly dispersion and the approximations made in their derivation. 
For a single rigid body in translational motion in a steady unbounded flow field of an effectively 
inviscid fluid, the concept of added mass may be defined through that of the impulse to be 
transmitted to the fluid by the action on the body over a very short time of some hypothetical very 
large force, in order to set up the flow field instantaneously from a situation in which the body 
is imagined to move with the fluid velocity at infinity, i.e. one in which the body experiences no 
force. Alternatively, one may study how the presence of the fluid affects the velocity that the body 
will acquire upon an instantaneous acceleration of the fluid at infinity. For a single rigid body the 
two methods are equivalent, in contrast to the case of a bubbly dispersion, as will be shown. 
Illuminating discussions of the added mass concept are given in LighthiU (1986) and Landau & 
Lifshitz (1959); the exposition in this paper owes much to these books. 

A well-known expression for the added mass coefficient m(E) of a dilute bubbly dispersion 
consisting of equally-sized spheres is (van Wijngaarden 1976) 

re(E) = ½pt E(I + 2.78E) + O(E3). [1] 

Here p~ and ,  denote the density of the fluid and the void fraction, respectively, van Wijngaarden 
(1976) determined the mean velocity of the bubbles of a uniform dispersion immediately after the 
flow had been impulsively set into motion. By calculating the velocity that a reference bubbles will 
attain in the presence of just one other bubble at an arbitrary relative position, and by subsequently 
averaging the result over all possible relative positions of the two bubbles, [1] was obtained. The 
method will be briefly explained in section 3.1 for the more general case in which the dispersion 
is not necessarily at rest initially. 

The alternative way of defining the effective added mass, through the fluid impulse, is treated 
in section 3.2, again for a dilute dispersion. In contrast to the one used by van Wijngaarden, for 
which only the probability distribution of the relative bubbles positions has to be specified, this 
method also requires a specification of the probability distribution of the relative bubble velocities. 
We have not been able to find any information on this distribution function, neither for dilute nor 
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for non-dilute dispersions, and shall here make the usual step of assuming the bubbles to have equal 
velocities. The resulting fluid dynamical problem is then analogous to that encountered in the 
determination of the effective thermal conductivity of a composite material consisting of equally- 
sized non-conducting spheres in a conducting matrix. For a dilute composite the latter problem 
was addressed by Jeffrey (1973); by a minor adjustment of his analysis the added mass coefficient 
is found to be given by 

m(t) = ½p~ t(1 + 3.32E) + O(t3). [2] 

As will be explained, the difference between [1] and [2] is due to the fact that different velocity 
probability distributions are used in their derivation, van Wijngaarden's (1976) result is exact to 
the extent that the bubble velocities are defined by the dynamics of the flow problem, whereas for 
the determination of the fluid impulse in section 3.2 an assumption for the velocity distribution 
function has been made. When the precise details of the bubble interactions are not included, but 
merely the presence of neighbouring bubbles around a reference bubble is accounted for, Zuber's 
(1964) result is found, 

, ( i  + 2,'~, 
re(c) = ;p, t  \-T~-c ] [31 

which in the limit of small void fraction reduces to 

re(e) =½p,((I + 3 t ) +  O(~3). 

The second purpose of this paper is to present an expression for the added mass coefficient of a 
non-dilute bubbly dispersion. Both the forementioned approaches lead to the same result, valid 
for any value of the void fraction, when the spherical bubbles are taken to be arranged in 
cubic arrays of infinite extent. By symmetry, all bubbles have equal velocities in that case. 
Exact relations for the added mass coefficient for three types of cubic arrays will be given in section 
4.1 through an analysis based on Sangani & Acrivos (1982, 1983). An interpolation then yields 
(section 4.2) an approximate relation for the added mass coefficient for random non-dilute 
dispersions. 

We conclude the paper (section 5) with a brief discussion on the use of the relations that were 
under consideration in an equation of motion for the gas bubbles. 

The description of the flow of a bubbly dispersion in this paper is not in terms of the drift flux 
model or the multifield model. Flow parameters will be defined as ensemble averages, and instead 
of the mean fluid velocity we will take the mean velocity of the dispersion as a reference velocity 
for the bubble motion. In order to avoid misunderstanding a brief comment on this method of 
description is given in the following section (section 2). 

2. THE METHOD OF AVERAGING 

Equations of motion for bubbly dispersions that treat the two phases as continua are necessarily 
relations between rates of change of averaged flow parameters. This implies that some kind of 
averaging procedure is involved in their derivation. The appropriate method of averaging for 
dispersed flows, a bubbly fluid for example, is statistical averaging over an ensemble of realizations 
of the dispersion (ef. Batchelor 1970). The usual procedure is then to introduce a probability density 
function (pdf)f(rgt~, ~ ,  t) meaning that 

f(~N, ~N, t) ~ ,  3~V" N ----f(xt, X2 . . . . .  XN, Vt, V2,. • . ,  VN, t) 6Xl, 3X2 . . . . .  6XN, 3Vt, flY2 . . . . .  ~V~ 

is the probability of finding N bubbles, where N ~, 1, at time t in the volume elements 6x~, 
6x2 . . . . .  6XN,6VI,CSV2 . . . . .  6V N around the points xj, X2,...,XN, Vl, V2 . . . . .  V N of a 6N- 
dimensional phase space. Each point in this space specifies the positions of the centres and the 
velocities of the N bubbles in one realization of the ensemble. In this paper the bubbles will be 
assumed to be identical rigid spheres, so the pdf is normalized by 

I ff(CC'N, ~r~N, t) dC~ d"FNN = N!. 
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Flow parameters associated with the bubbles such as the mean number density n (x, t) and the mean 
bubble velocity ~(x, t) are consequently defined as (Hirschfelder et al. 1954) 

n (x, t) = ~.p 6 (xk - x)f(c~:¢, ~ ,  t) dqfN d ~  

and 

'ff n ( x , t ) v ( x , t ) = ~ ,  t ~ vk 6 (xk -- x)f(c~N, ~.~, t) dC~N d ~ .  
k = l  

The void fraction E(X, t) is then defined as 

~(x, t ) =  ~ta3n(x,/), 

where a is the radius of the bubbles. Also, the mean velocity of the dispersion is given by lff 
fi(x, t) = ~ u(x, t)f(~N, ~ ,  t) d~' N d ~ ,  

where u(x, t) is the velocity at a point x at time t, irrespective of whether x is in a bubble or in 
the fluid. 

Use shall also be made of an averaging of a bubble parameter G that is not an explicit function 
of time, with respect to a reference sphere being at Xo having velocity v 0 in a dispersion consisting 
of N + 1 spheres, i.e. 

CO.o,t)=fdvof Xo,.o,t)[ ,ffG(xo, 1 
Here f(ffN, ~ ,  t Ix,0, %) is the conditional pdf for finding at time t spheres at x, with velocity v k 
(k -- 1, 2 . . . . .  N) when it is given that there is a sphere at x0 with velocity v0. 

In the following sections we shall adopt methods of analysis used in suspension rheology and 
in the study of the thermal properties of composite materials. In a Stokes flow problem, e.g. the 
sedimentation of small particles, the instantaneous velocities of the particles in an element of a 
suspension are uniquely specified by their instantaneous positions when the value of either the 
velocity or the force exerted per unit area at the boundary of the element is given (cf. Batchelor 
! 972). Thus, the ensemble averaging merely consists of averaging over a configurational probability 
distribution P(q¢~). In contrast, in bubble flows hydrodynamic interaction between the bubbles 
gives rise to dynamic pressure forces of non-linear character; and here the use of the full pdf 
f(ff~, ~ )  will be required in general. An exception however, is the flow problem considered in 
section 3. l, where the boundary conditions uniquely specify the potential flow field and the sphere 
velocities. 

As mentioned above, in section 3.2 we shall assume the bubbles to have equal velocities. So here 
as well as the averaging reduces to an averaging over the probability of relative sphere positions; 
with the convenient consequence that for a contraction to a two-sphere problem the renormaliza- 
tion technique of Batchelor, developed for the Stokes flow problem (Batchelor 1972) and employed 
by Jeffrey (1973) for the thermal conductivity problem, can be applied. The mean value of G is 
then defined by 

'I G(x0, t) = ~.r G(xo, ffN)P(q¢u, t lx0) dffu, 

where P(ffN, t Ix0)dC~N is the probability of finding at time t, N spheres in the volume elements 
dC~, given that there is a sphere at x0. In the following, reference to time t shall be suppressed. 

It is common practice in the two-phase flow literature to use the mean velocity of the fluid as 
a reference velocity for the description of the relative motion of the gas bubbles. In engineering 
practice the mean fluid velocity is an important parameter and of course one is free to choose any 
reference velocity that best meets one's purposes, however if one wants to adopt concepts developed 
in the classical literature for the motion of single bodies in unbounded flow fields the use of the 
mean velocity of the dispersion fi is conceptually more advantageous. Part of the reason is that 
a single rigid body experiences no force if it moves with the velocity of the flow at infinity, 
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considered to be set up by some unspecified external mechanism. Therefore, forces exerted by the 
fluid as a consequence of the body's relative motion, e.g. due to a buoyancy force, are expressed 
in terms of the difference between the body's velocity and the fluid velocity at infinity. In the same 
manner the mean velocity of a dispersion may be considered to be specified, for instance by the 
volume fluxes of the two phases that are introduced into the bottom of a vertical pipe section. Again 
the bubbles would experience no force if they were imagined to move along with the mean velocity 
of the dispersion. So it seems to be more appropriate, in analogy to what one usually does in 
suspension rheoiogy, to take this velocity as a reference velocity for the motion of the bubbles. The 
advantages of this method of description will become clear in the following sections. 

3. DILUTE DISPERSIONS 

3. i. The Change of the Mean Bubble Velocity Due to an Instantaneous Acceleration of the Dispersion 

Consider an element of a bubbly dispersion in which the void fraction ¢, the mean bubble ~ and 
the mean velocity i may be taken to be statistically stationary functions of position. Imagine the 
element to be acted upon by impulsive forces such that the mean velocity is instantaneously 
changed by an amount Aft; we may then ask by what amount A~ the mean bubble velocity 
instantaneously changes as a consequence. The answer may be given by the following line of 
reasoning (cf. Lighthill 1986). 

In each realization of the dispersion the applied impulsive forces result in an impulsive excess 
pressure Pe in the fluid which exerts an impulsive force on each bubble k, given by 

-~'+:dtfponkdA. 
Here dA is a surface element coinciding with the bubble surface, nk is the unit normal directed into 
the fluid and r is the small time of action of the applied impulsive forces. Under the assumption 
that the bubbles are massless (an assumption that does not affect the final result for the added mass 
coefficient, which is associated with the fluid inertia), the impulsive force exerted by the fluid on 
each bubble equals zero, giving 

- nkdA p . d t  = 0. [4] 

Furthermore, the excess pressure may be associated with the local change of the momentum of a 
particle of fluid, which makes it possible to define a potential such that 

! f ' + '  
- - - -  p~ dt, An(x) = grad q~, 4~ = P, 

where ¢ satisfies the Laplace equation on account of the incompressibility of the fluid. Applying 
[4] yields, again on each bubble k, 

f~b dA =0 .  [5] nk 

Without the spheres the change of velocity would be Aft throughout the fluid, so the velocity 
potential may be written as 4~ = q~0 + ~b~, where 40 = Aft" x and ~bj is the disturbance potential due 
to the motion of the bubbles. This definition of the potential, together with condition [5] and the 
condition 

Vq~ ' nk = Av~.  nk, 

uniquely determines the velocity potential and ensures that the change in velocity of each of the 
bubbles in any realization is given when the positions of the bubbles are specified. 

It follows that the change in the mean velocity of the bubbles can be determined by concentrating 
on a reference sphere and ensemble averaging over the conditional probability distribution of the 
relative sphere positions P (~s  Ix0), viz. 

,f A~ = ~.r Av0(xo, ~ N ) P ( ~  IXo) d~N. 



ADDED MASS COEFFICIENT IN TWO-PHASE FLOW 915 

Also, this change will be independent of  the initial distribution of  bubble velocities before the 
instantaneous acceleration, and therefore the change in the mean bubble velocity is the same as 
that of a dispersion which is initially at rest. 

It is the latter situation that is envisaged in van Wijngaarden (1976) for the determination of 
the added mass coefficient of a dilute bubbly dispersion, van Wijngaarden finds, for details of  the 
analysis the reader is referred to his paper, 

A~ = 3(1 - 1.85c)(Afi), [6] 

correct to first order in the void fraction, i.e. the approximation in which only pair interactions 
are taken into account. Here it is assumed that the configurationai pair pdf has the form 

P(xo + rlXo) = {0, r ~< 2a,~ 
n(x0 + r) = n(Xo), r > 2a,J [7] 

expressing that no spheres can overlap, that the probability of finding a sphere at x0 + r is 
independent of  whether there is a second sphere at x0 and that the dispersion is spatially 
homogeneous in the considered element around x0. 

The result can be associated with an added mass coefficient by reasoning as follows (cf. Landau 
& Lifshitz 1959). When the bubbles "move along" with the fluid the impulsive force density on 
the volume taken in by the bubbles would be 

~na3np~ Aft = Epl Aft. 

The total impulsive force density on the bubbles consists of  this contribution and a contribution 
which accounts for the additional momentum to be transmitted to the fluid in order to accelerate 
the bubbles relative to the mean velocity of the dispersion. Writing this latter contribution as 
m(E)(A~-  Aft), the condition that the total impulsive force on the bubbles is equal to zero then 
gives 

cpL A f t  - m (c) (A~ - Aft) = 0. [8] 

Combining [6] and [8] the added mass coefficient m(E), thus defined, is found to be 

m(c) = ½p, E(l + 2.78~) + O(E3). [9] 

The contribution of  O(E 2) accounts for the pairwise interaction of the spheres. In the absence of 
interactions the added mass of  each of the spheres is 1 4 3 ~p,(~a ) and we would have re(E)= ½p~E. 

3.2. The Mean Fluid Impulse 
Consider as before a dispersion of  equally-sized rigid spherical bubbles in a fluid; the number 

density is n(x, t) and the mean bubble velocity and the mean velocity of the dispersion are given 
by ~(x, t) and ti(x, t), respectively. Assume that there is a region about x, of  volume V and 
consisting of  a large number (N + 1) spheres, within which the flow is approximately uniform. 
When the spheres are carried along with the fluid the mean momentum of the fluid outside the 
spheres is given by pl (1 - ~)fi. The mean fluid impulse I may then be defined [in the sense of  Landau 
& Lifschitz 0959)] as the ensemble mean of  the additional momentum that is transmitted to the 
fluid when the bubbles are instantaneously (through the action on the bubbles of  hypothetical large 
impulsive forces working over a short time interval) given the velocities that, at the moment of  
consideration, characterize each member of  the ensemble of  realizations of  the flow. On account 
of  the equivalence of ensemble averaging and volume averaging for a homogeneous flow, it is given 
by 

1 
n I = - ~  ~ I, ( k = O , l , 2 , . . . , N )  

with 

Ik ----- Pl fc~J nk dA. 
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Here ~ is the velocity potential associated with this instantaneous relative acceleration. The 
potential is uniquely determined by the specification of the sphere velocities and the boundary 
conditions 

V4~, ' nk = (v,  - a ) .  n , .  

The analysis is somewhat easier when first use is made of the relation between the impulse lk 
and the dipole strength Gk of the image system of sphere k associated with the change in the velocity 
of the fluid (Lighthill 1986) 

We then have 

1, = piG, --~na3pl (v, -- ii). 

nl= -p ,c (~- i )+ p , i  ~ G,. [10] 

When the dispersion is so dilute that the effects of hydrodynamic interactions are negligibly small, 
each sphere may be assumed to be alone in an infinite fluid and the mean dipole strength will be 
given by 

with the familiar result 

This allows us to write [10] as 

Go = 2na3(~ -- fi), 

, / 0  ' = 5pl~;(~ -- ~). [1 1] 

nI  l 1 = ~ p 1 ~ ( ¢ -  li) + p, - f  G , , .  

Here G,, = G , -  Go is the additional dipole strength of sphere k due to the presence of the 
neighbouring spheres. 

Next, take the steps of concentrating on a reference sphere, with velocity v0 at Xo say, and 
converting the averaging into an ensemble averaging 

with 

I ~ G , ,  nG, 
V 

No progress can now be made without knowledge about the probability distribution of the 
spheres. In the two-phase flow literature the sphere velocities are usually taken to be equal to the 
mean bubble velocity ¢ in order to make an analogy possible with the thermal conductivity 
problem, and we shall continue the analysis upon this assumption. The averaging then reduces 
to an averaging over the configuration of the sphere positions relative to that of the reference 
sphere, viz. 

1; 
El ---- N.t GI (x0'  ~N)P(r~N Ix°) d~ 's"  [121 

In the case of dilute dispersions the natural way of obtaining an approximate expression for the 
mean dipole strength would be to evaluate [12] by allowing for pair interactions between the 
reference sphere and one other sphere only: 

C, = fG1 (Xo, Xo + r)P(x0 + rlxo) dr. [13] 
J 
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However, this procedure would lead to a conditionally convergent integral. The problem does not 
arise when the renormalization technique devised by Batchelor (1972) is applied first. When the 
reference sphere is replaced by fluid the mean velocity at xo is given by 

N--? U(Xo, N )  = a 

or, when the spheres are assumed to have equal velocities 

l ~ u ( ~ , ~ N ) P ( ~ ) d ~ , ,  ft. 
N! J 

Therefore, we may write 

if N--~ VSt(x0, ~ )P(qfN)  dogs = 0. 

Adding 2ha 3 times this expression to [12], gives 

,f C, = ~!  [Gt(xo. C#N)P(Cg N Ixo) + 2~a3V$t(xo, ~N)P(~N)] d~N, 

and upon reduction to the two-sphere approximation we now obtain 

1 I (]l = ~p [GI (xo, xo + r)P (Xo + r l Xo) + 2ha 3V~b, (Xo, x o + r)P (xo + r)] dr, [ 14] 

an integral that is absolutely convergent, as we shall see; [14] may be compared with expression 
[3.13] in Jeffrey (1973), where it is shown that it is correct to O(~2/n). 

For the calculation of [14] we shall take 

P(xo + r) = P(xo) = n (xo), 7 

) 0, r ~< 2a, [15] 
P ( x 0 + r l x o ) =  n(x0), r >2a ,  

a natural choice, having made the assumption of equal sphere velocities (cf. [7]). The velocity at 
x0, relative to ii, due to a single sphere at xo + r is given by {,-°, r-< a l 

V~b I (Xo, X o + r) = (~ -- fi)a 3 3(~ -- fi)" ra 3 [16] 
2r T + 2r s r, r > 2a, I 

and the additonal dipole strength may be inferred directly from Jeffrey's (1973) solution of the 
two-sphere problem: 

G I--21ta3[ ( ' - [ i , a 3  3 ( ' - f i '  "ra3 ] 27ta 3 ~ (a-~Ap( , - f l ) -Bp( ' - i i"rr l  r - p . [17] 
p-6 \r /L  

Values for the coefficients Ap and Bp may be found in his paper. Note that the term in square 
brackets in [17] is precisely -V~bl(X0, x0 + r) for r > 2a; it is this term which renders the integral 
in [13] conditionally convergent, but which is removed by application of Batchelor's renormaliza- 
tion technique. 

After subsitution of [15]-[17] into [14] it can be shown that the mean additional dipole strength 
results from two contributions, 

~l = 27ta3" ( ' - -  i l ) d r -  2rca3n ~ ~ (ayVA,(,-il) - B, (' ri r dr. [18] 
,;, >u I , a - 6 k r / L  

Evaluation of the integrals shows the first contribution to be 
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whereas the second contribution is 

 p--3373 p = 6  

The final expression for the fluid impulse density is given by 

I+3,  I+  . (/~22~-;-3_]J 

or, after numerical evaluation of the summation, 

nl" = 5p~(l  + 3.32E)(~- fi). 

It may be associated with an added mass coefficient re(E) by writing 

h i =  m(E)(~ - G), 

from which it follows that 

rn(,) = ~p,,(l  + 3.32E). [19] 

It is instructive to compare the expression for the mean additional dipole strength [18], viz. 

nG, =~-,2F* ~" Bp-3A~ It~-a), 
" -'_I" 

with that of Jeffrey (1973) for the mean additional thermal dipole strength of non-conducting 
spheres (fl -- -½ in that paper), 

(p (vf) 
p = 6  

The results may be compared when replacing (~ - fi) by ( -  VT"). The contributions associated with 
the integration over the range r > 2a in [18] appear to be identical, but those arising from the 
integration over r ~< a are different. The reason is that the potential field inside a single sphere does 
not have the same form, namely (~ - fi). x in the fluid dynamical problem, and ~2(VT) • x in the 
thermal conductivity problem. This shows that even with the assumption that all spheres have equal 
velocities, the two problems are essentially different. The potential fields outside the spheres may 
be compared because they are determined by similar conditions on the normal derivatives of the 
potential at the surfaces of the spheres. However, in the thermal conductivity problem we have the 
additional condition of continuity of the potential on the sphere surfaces, a condition not imposed 
in the fluid dynamical problem. That the potential field &side the spheres is relevant for the 
calculation of the fluid impulse, which according to [10] seems to be determined by the potential 
field of the fluid outside the spheres can be understood from the following argument (Jeffrey 1973, 
section 6). 

To obtain the very dilute approximation [I i] it was assumed that each sphere moved with a 
velocity ~ -  fi in a fluid at rest at infinity. The volume flow associated with the bubble motion is 
,07 - fi) and therefore the average fluid is - ,  (V - fi) + O (, 2) in order to maintain zero mean volume 
flux. So a second-order correction to [10] can be obtained by supposing that each of the spheres 
is alone in an infinite medium with velocity - ,  ( ~ -  fi) at infinity. The dipole strength of each of 
the spheres is then 

= 2na3(~ - fi)(I + , )  

and the impulse density is 

, 1 =  ½p,E(I + 3,)(~ - ~). [20] 

If the velocity field inside the spheres were different the second-order correction would have differed 
correspondingly. Note that the argument leading to [20] makes no reference to any assumption on 
the bubble velocities. 

We are now in the position to explain the differences between the results of van Wijngaarden 
(1976), Zuber (1964) and [19]. The contr ibut ion ~pl ,  2 to the added mass coefficient is simply the 
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result of the presence around each of the bubbles of neighbouring bubbles. The precise value of 
the O(t2)-term depends on the details of the interactions between the bubbles in the dilute limit, 
and therefore depends on the form of the pair probability distribution of sphere positions and 
velocities. This velocity distribution follows in van Wijngaarden (1976) from the condition that in 
each realization the velocity change of the bubbles should be such that no additional momentum 
is transmitted to the fluid by each of the bubbles, while in this section we determined the additional 
momentum that should be transmitted in order to set up a specific velocity distribution, viz. one 
in which in each of the realizations the bubbles have equal velocities ~. 

In a dispersion where all the spheres are far removed from each other the distance between 
neighbouring spheres is O(a¢ -ja) and so the probability of finding a sphere around any other 
sphere within the range r < a¢- ~3 is zero and is O(n) for r > aE- J'L An approximate expression 
for the added mass of a dilute dispersion may therefore be determined by assuming a massless 
sphere to be located at the centre of another sphere with radius a¢-J:3. Whether the velocity is 
calculated that the inner sphere would obtain upon an instantaneous acceleration of the entire 
system from rest to a velocity fi, or the fluid impulse when the inner sphere has velocity ~ and the 
outer sphere velocity fi, the same result for the added mass will be found. This can be inferred from 
Milne-Thomson (I 968): 

m(¢) = ~p,E \ I - E ]" [21] 

The method sketched above is the one used by Zuber (1964); for small ¢ we have 

m(¢) =½p,¢(1 + 3¢) + 0(¢3). [22] 

4. NON-DILUTE DISPERSIONS 

4. !. Periodic Arrays 
An exact expression for the added mass coefficient, valid for any value of the void fraction, can 

be found by assuming the bubbles to be arranged in an infinitely extended spatially periodic array. 
By symmetry, the change in velocity upon an instantaneous acceleration of the dispersion has the 
same value for each of the spheres and is therefore equal to the change in the mean velocity. 
Furthermore, it is clear that the added mass coefficient found by a determination of this velocity 
change is equal to that calculated from the mean fluid impulse if it is assumed that in the latter 
case the spheres have equal velocities. By the arguments given in section 3.1 we can address the 
problem by calculating the velocity of the spheres when accelerated instantaneously from rest, and 
we then have to solve the Laplace equation with the boundary condition Vq5 • n = ~ • n on each of 
the spheres, and the further condition that the mean velocity in a unit cell of the array takes the 
value ii. The mean bubble velocity subsequently follows from the condition that for each of the 
spheres 

f ~bn dA =0.  

This potential flow problem is essentially analogous to the problem of determining the effective 
thermal conductivity of a composite material consisting of periodically arranged non-conducting 
spheres in a homogeneous matrix, for which a method of solution has been developed by Sangani 
& Acrivos (1982, 1983); their method will be adopted here. 

Formal solution of the potential flow problem 
Assume that the positions of the centres of the spheres are given by 

rn = nlat +n2a2+n3a3 (nt,n2,n3=O, 4-1, 4-2 . . . .  ), [23] 

where a~, a: and a3 are the basic vectors determining the unit cell of the array. The three cubic 
arrays examined in what follows are: simple cubic (SC), body-centred cubic (BCC) and 
face-centred cubic (FCC); the reader may find expressions for the basic vectors of these 
arrangements in appendix 1 of Sangani & Acrivos (1982). Taking for simplicity the mean motion 
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of the fluid and the bubbles to be directed along the x=-axis, the fluid potential can then be expressed 
as 

4~ = u ' x ,  + ~b, [241 

where ~b is a spatially periodic function 

~(r )  = ~ ( r  + r.)  

with r. given by [23]. The as yet unknown velocity u* will be specified later from the condition 
that the mean velocity in a unit cell must equal iT. 

A formal solution for the potential field q~ reads 

where 

and G is the differential operator 

¢(r) = GS,, [25] 

~m+n+p 
G = ~" (u* - 6)A,..p ~x]" 0x~ 0x~ (r = xl ,  x2. x3). [27] 

m + n + p = l  

Here z0 is the volume of a unit cell of  the array and k. are the reciprocal lattice vectors given by 

k . ' a : = n j  (j = 1.2, 3). 

Note that [25]-[27] are only valid outside the spheres; inside the spheres the flow field is given by 
the constant mean bubble velocity v. The coefficients A in [27] subsequently follow from the 
condition that the normal components of the fluid velocity and bubble velocity are equal on the 
surfaces of the bubbles. 

Inside the unit cell containing the origin the fluid potential 4~ can also be represented as a sum 
of spherical harmonics: 

• ' n ~  1 '2 .  

dp = ~ ~ ( u * - E ) ( E . . . +  F . , . r ' -4" )Y  4"',._,(x,,x:,x3), [28] 
n = l  m = l  

where 

and 

Y'~(x,, x2, x3) = r"PT(cos 0) cos mtp 

x ~ = r c o s 0 ,  x2=r s in0cos~p ,  x~=rs in0s in~0 .  

Application of the forementioned boundary condition yields the relation 

F.., + L.a 4" - IE.,. = - L,,a361.. 

with L. given by 

[29] 

M = n + 2 m .  ~ = xz + ix3, q = x 2 -  ix3. 

2n - 1 

2n 

By making use of the expansion of S~ in spherical harmonics near r = 0 from Hasimoto (1959), 
2n x m ~ l,2n 

SI =1_ _ •.+. r2 __~ S am r ~ + a.., Yz. (Xl, x.. ,x3). [30] 
, = 2  = 0  

where ? and a.,. are constants characteristic of the particular type of array, and by reformulating 
the differential operator as 

f. r,-, FfL " f±Y'] G = M-o . - o  (2 .  + i)s (u* - : ) A . .  5~-~-? : '  L \ a ¢ )  + \ a n )  r t31] 

with 
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we are then able to establish, upon substituting [30] and [31] into [25], two additional relations 
between the coefficients A~., E,,. and F~ .  Together with [29] these lead to a set of linear equations 
in the unknown A, . ,  viz. 

a 4''+3 ~, '~uF).,(2 p + 4q,)! 22(2 p + 4q~)[ IA,_ 
A'~=L"+'(2M+4m+l)!f='-o j~-o L~2f f~4j+l) !a"q '+(2J-4 j+l )  !a'q2 2j.: 

4n 
+Lta3~u.o(l +-~%Aoo), 

with 

p = M + J + l ,  q~=:m+j, q~=lm- j l ,  

2j = 22 =~ if m = 0 , j  ~ 0, 
21=~, ).~=1 i f m = j : / : 0 ,  
At = 22 = ~ otherwise. 

The solution, for given 6 and ,7, is finally completed by imposing the condition that the mean 
velocity in the unit cell equals if, i.e. 

l ( na3f + f dV, ) = a, [32] 

where the integration is over the volume taken in by the fluid. Note that a similar condition need 
not be posed on the temperature distribution in the unit cell of  the temperature problem. If the 
imposed non-periodic temperature gradient is taken equal to the mean temperature gradient it is 
satisfied automatically. Evaluation of [32] yields 

4n 
a = u* +--Aoo(u* - v). [33] 

TO 

The added mass coefficient 
As explained above, the change in the mean bubble velocity follows from the condition on the 

surface of  each sphere, 

f cknl dA = O, 

where n t is the x :component  of the unit normal directed into the fluid. This is equivalent to 

Ina3~ + 4rrA0o(f - u*) = O. 

Combined with [33] this yields 

( T0 VI-' 
F=~ 1+e l+4---~--~)J . [34] 

In the manner described at the end of section 3.1 an added mass coefficient re(e) may then be 
defined, which is given by 

[ 'iI m(~)= -p,c  1 + - [351 
T O 

E 1 + 4 - - - ~  

This expression has been evaluated numerically for the three types of  arrays and the results, 
together with that of van Wijngaarden for a dilute (random) dispersion, are shown in figure 1. For 
the calculation of  the constants ~ and a.,~ the direct sum method, described in appendix 1 of Sangani 
& Acrivos (1982), was used and it was found that the computed values were in exact agreement 
with those given in table 4 of  that paper. 
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Figure. ]. Added mass, according to the definition of  van Wijngaarden (1976), as a function of the void 
fraction for random dilute bubbly dispersions and dispersions with periodically arranged bubbles 

(m o = [p,e). 

4.2. Random Arrays 
An approximate expression for the added mass coefficient of a random non-dilute dispersion may 

be obtained through interpolation of the results for the three types of arrays found above. A fit 
suggested by the work of Sangani & Acrivos (1983) is 

m(~)=~pj~ E[K~ln(Emax-~)+K2], [36] 

where ~,,a~ = 0.62 is the void fraction of a random closely packed dispersion. For E <~ 0.35 an 
excellent fit is achieved when we let the constants K~ and K2 take the value K~ ~- -1 .98  and 
K2 ~ 0.05. For comparison, [36] and the other approximate relations [19] and [21] are shown in 
figure 2. Note that for c ~< 0.35, [21] and [36] yield almost identical results. 

5. DISCUSSION 

After dealing with the relations published in the two-phase flow literature for the added mass 
coefficient, we discuss their applicability in the description of the average motion of gas bubbles. 
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Figure 2. Added mass, defined by means of  the fluid impulse, as a function of  the void fraction for random 
I dispersions of  bubbles with equal velocities (m 0 = ~p~ ~ ). 
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Such a theory is effectively a continuum theory, and it therefore underlies the usual assumption 
that the time scales and length scales of the motion of the dispersion are such that meaningful 
(observable) averages can be defined that are continuous space- and time-dependent field variables; 
here this implies that locally the bubbly dispersion should not be far removed from the uniform 
"equilibrium" state. 

The dispersion studied by van Wijngaarden (1976) was instantaneously accelerated. As a 
consequence the system is, if it was in some type of equilibrium, instantaneously pushed out of 
this equilibrium. The result given for the change in the mean bubble velocity due to this 
instantaneous acceleration [9] is a fair approximation--it would be exact if it could be shown that 
the pair probability distribution [7] is representative for a real flow--and an added mass coefficient 
may of course be associated with it, but it is not the coefficient to be used in a continuum theory 
for the average bubble motion. The mean fluid impulse, and so the related added mass coefficient, 
is determined by the probability distribution of bubble positions and velocities that represents the 
state of the dispersion at a particular instant. For the dynamics of the flow it may be interpreted 
as an addition to the mean momentum of the gas of an element of the dispersion, in the sense that 
part of the mean force exerted by the fluid on the bubbles is expressible in terms of the time rate 
of change of this additional momentum. It is this concept of added mass that is of relevance to 
a continuum theory of the bubble motion. In a further study (Biesheuvei & Gorissen 1989) this 
will be worked out in a derivation of the momentum conservation equation for the bubbles based 
on elements of the kinetic theory of dense gases, and which, together with a conservation equation 
for the mean bubble number density, will form the basis of a description of the propagation of 
void fraction disturbances in a uniform bubbly fluid. 

In section 3.2 progress could only be made by assuming that in each realization of the flow the 
bubbles have equal velocities, van Wijngaarden's (1976) method, in which in each member of the 
ensemble the sphere velocities are different, yields an added mass coefficient m (~) = ½p~ ~ (1 + 2.78~) 
that differs from re(c)= ½p~(l + 3.32¢), obtained from the fluid impulse, so we suspect that the 
added mass coefficient, as calculated in section 3.2, will be modified when velocity fluctuations from 
the mean are accounted for. The effect is only of o(¢2), and in practice Zuber's (1964) results 
rn(E) = ~p,c(l + 3c) will be a valid approximation. 

When the dispersion is non-dilute the importance of the velocity fluctuations is likely to be less 
and [36] or [21], viz. 

, ( i  + 2E'  m(,)-- ), 

may be used. Uniform bubbly flow does not occur in practice above values of the void fraction 
of about 0.3, when this flow pattern is unstable to void fraction disturbances, however in a theory 
that explains this phenomenon the results may be of assistance. 

The random motion of the gas bubbles is also the reason that the simple relationship that exists 
between the impulse and the kinetic energy of the fluid for the motion of a single rigid body is 
not found for the ensemble mean values of these quantities for a bubbly dispersion. The mean 
kinetic energy of the fluid at a point x in the dispersion can be determined in the same manner 
as the fluid impulse in the previous section, by assuming again that there is a region about the point 
x of volume V, in which the flow variables are statistically stationary random functions of position. 
When the spheres move along with the fluid the velocity field will be uniform with value u. The 
additional mean kinetic energy of the fluid due to the relative motion of the bubbles can be thought 
to be transmitted to the fluid by the action over a very short time r of large impulsive forces f, 
on the bubbles in order to set up this relative motion. These forces do work 

f/+'t 1 ~ ( v , _  ~). (fkr) ~ ~ (v,-- ti) ' fk dt =~ 

or, equivalently, 

1 ~(vk_ ~)" I,. 

M F 15"~E 
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The mean additional kinetic energy density is thus given by 

½ n ( v - f i ) ' l = ~ n ( V - f i ) ' l + ½ n ( v - f i ) ' l ' = ½ p ~ E m ( Q l ~ - f i l : + ½ n ( v ' - i l ) . l ' ,  [37] 

where I is again the mean fluid impulse. Due to the averaging process, a term with the mean product 
of fluctuations appears. One would expect that it is proportional to the square of the mean velocity 
difference and [37] may therefore be written in the form 

~n(v - fi). I = ½p,~m*l~ - ill:. [38] 

So, formally, only when the bubbles have equal velocities is it allowed to equate the coefficient 
m*(Q, appearing in the expression for the mean kinetic energy [38], to the added mass coefficient 
associated with the fluid impulse. 

One final remark should be made: in this paper the bubbly dispersion was considered to be locally 
uniform, and the configurational pair distribution function was chosen accordingly. The established 
expression for the fluid impulse therefore does not represent possible effects of small spatial 
variations ("small deviations from equilibrium"), that in principle should be incorporated in a 
continuum theory, being essentially a non-equilibrium theory. For flows with variations in the void 
fraction over length scales that are not "small" in some sense, but "long enough" for a continuum 
hypothesis to be admissible, the added mass coefficient may also appear to be a function of the 
local value of the void fraction gradient. There is little doubt, however, that the dependency on 
the local value of the void fraction itself, given by the above-mentioned relations, remains unaltered 
in this situation. 
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